Systemic VEGF Inhibition Accelerates Experimental Atherosclerosis and Disrupts eNOS-mediated Endothelial Homeostasis

Stephan Winnik1,2, Christine Lohmann1, Giovanni Siciliani1, Tobias von Lukowicz1, Kira Kuschnerus1, Frank Ruschitzka1,2, Thomas F. Lüscher1,2,3, Christian M. Matter1,2,3

\textsuperscript{1) Cardiovascular Research, Institute of Physiology, University of Zurich, Zurich, Switzerland
2) Division of Cardiology, Dept. of Medicine, University Hospital Zurich, Zurich, Switzerland
3) Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland

\textbf{Background:} Pharmacological inhibition of \textit{vascular endothelial growth factor} (VEGF), a major mediator of angiogenesis, has become a widely accepted and effective treatment of \textit{age-related macular degeneration} (AMD). Recent meta-analyses of prospective clinical trials, however, raise concern for systemic vascular off-target effects.

\textbf{Objective:} We investigated the vascular effects and molecular mechanisms of systemic VEGF inhibition in a mouse model of atherosclerosis and a possible role of \textit{endothelial nitric oxide synthase} (eNOS) as downstream target of VEGF.

\textbf{Methods:} 8-week old male apolipoprotein E knockout mice were fed a high cholesterol diet (1.25\% w/w) for 24 weeks and were exposed to a systemic pan-VEGF-receptor inhibitor (PTK787/ZK222584, 50mg/kg/d, n=10) or placebo by gavage for the last 10 weeks. Atherosclerotic plaque formation was quantified \textit{en face} in thoraco-abdominal aortae; cellular plaque composition, proliferation, and eNOS expression were assessed by immunohistochemistry in aortic arches. Further expression analyses, endothelial proliferation, and \textit{nitric oxide} (NO) availability were assessed in cultured human aortic endothelial cells.

\textbf{Results:} \textit{In vivo} systemic VEGF inhibition increased atherosclerotic plaque formation by 33\%. Plaque-resident macrophage content was increased 2.2 fold, whereas the number of proliferating cells was decreased in the intervention group. \textit{In vitro} we observed a dose-dependent decrease in total eNOS, resulting in a reduced NO availability and endothelial proliferation with increasing doses of PTK787.

\textbf{Conclusion:} Our data provide a novel mechanism for cardiovascular off-target effects of systemic VEGF inhibition. Given the inherent increased cardiovascular risk of AMD-patients and their need for chronic therapy, cardiovascular safety should be specifically addressed in prospective clinical trials.